a2 United States Patent

Sahoo

US009152384B2

(54) SYSTEM AND METHOD FOR REFERENCING
A DYNAMIC MODULE SYSTEM WITHIN A
COMPONENT ORIENTED APPLICATION
DEVELOPMENT FRAMEWORK

(71) Applicant: Oracle International Corporation,

Redwood Shores, CA (US)
(72)

Inventor: Sanjeeb Kumar Sahoo, Bangalore (IN)

(73) ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 54 days.

@
(22)

Appl. No.: 14/137,483

Filed: Dec. 20, 2013

(65) Prior Publication Data

US 2015/0046914 A1l Feb. 12,2015

Related U.S. Application Data

Provisional application No. 61/865,005, filed on Aug.
12, 2013.

(60)

Int. Cl1.
GO6F 9/44
GO6F 9/445

(51)
(2006.01)
(2006.01)

Java EE Application Container 601

Application
612

Client
Application
611

(2]
o

(10) Patent No.: US 9,152,384 B2
(45) Date of Patent: Oct. 6, 2015

(52) US.CL
CPC oo GOGF 8/00 (2013.01); GO6F 9/44521

(2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
2004/0194059 Al 9/2004 Akella et al.
2007/0061798 Al 3/2007 Atsatt
2007/0198475 Al* 82007 Medurietal. 707/3
2009/0276755 Al* 11/2009 Beltowski et al. 717/118
2011/0078659 Al 3/2011 Stark et al.
2012/0005663 Al 1/2012 Burckart et al.
2014/0298332 Al* 10/2014 Caietal.cccoceovvrnvernnnn 718/1

* cited by examiner

Primary Examiner — Philip Wang
(74) Attorney, Agent, or Firm — Tucker Ellis LLP

(57) ABSTRACT

A system and method can support a hybrid application devel-
opment environment. The system allows a client application
in the application runtime environment to obtain a reference
to a framework instance for a dynamic module system. Fur-
thermore, the system can configure a bundle in the dynamic
module system to be a gateway bundle based on the frame-
work instance, and the client application can access the
dynamic module system using the gateway bundle.

20 Claims, 8 Drawing Sheets

(Tt T T T N
! 0SGl |
L Framework I
| Instance :
: 610 |
N _/l

_____ S

0OSGI Runtime 602

Gateway
Bundle
621

Bundle
622

US 9,152,384 B2

Sheet 1 of 8

Oct. 6, 2015

U.S. Patent

20l
uoneo|ddy

sy

L 34N9I4
Zll LLL
Jdomawel oLL ylomawel
1980 soedssweN paleys 1980
dn oo ystiigand
001

LOL
uoneolddy

1SOH

US 9,152,384 B2

Sheet 2 of 8

Oct. 6, 2015

U.S. Patent

¢ 34N9Id

/ 0ze
— slpung wa}sAS

\

N\

|
— L ¢ Jspeo sse|d _
/

~N
r—————

P ———

L e slpung

|
f
|
\

\ | AT =

/ L

Zce spung

¢0¢ dwnuny 1980

(1soH)

£1Z uonealddy

L0C swuny 33 eAer

o
N

US 9,152,384 B2

Sheet 3 of 8

Oct. 6, 2015

U.S. Patent

€ J4NoId
é £0¢ Molsoday [eussixg)
)
_ oLe _
_ Jef 8|pung _
|
N—— r—= (I L€ uoneolddy 3soH h
. _ y = \
_ _ sie _
_ I~~~ T———T — aoue)su|
L | _ yiomawelq 90 |
————t——— o
| _ | T
_ _ _ _ _ J/
_ _ _
! _ _
_ s|pung | _
! | !
_ L
_ I
_ _ gle zLe
_ 770 | uonjeolddy uoljeolddy
_ alpung _
_ |
| 206 “ LOE Jeureyuo) uonesljddy 33 eaer
_
awinun
%oy
0¢

US 9,152,384 B2

Sheet 4 of 8

Oct. 6, 2015

U.S. Patent

v 34N9id4

mov\/\

wis)sAs s|npow olweuAp syl Aq papiroid s8oIAISS 810W 10 SUO BUlWNSUOD pue
‘we)sAs s|npouw olweuAp sy} 0] uonesiidde 1soy ay) YIIM pajeloosse $80In0sal
aJow Jo suo Buiodxs Jo suo 1ses)| 1e ‘uonesiidde 1soy ayj ela ‘Buiwiopsed

cor

wa)sAs s|npow olWweuAp sy Ul s|pung Wo)sAs
B UJIm Juswiuodiause swiuny uoneslidde ayy ur uonesldde jsoy e Buieioossy

Fov\./\

JusLWIUOIIAUS Swinunl uonesldde
Ue Ul We)sAs sinpow olWeuAp e Joj soue)jsul yJomawel) e Buluoisirnold

US 9,152,384 B2

Sheet 5 of 8

Oct. 6, 2015

U.S. Patent

g 34N9I4

/ 028
{ s|pung walsAg

\
AN

N
\.IIVII'I

!

L¥G Jopeo sse|d _A IIIII

_
y[||||| ~

(Aemaren)

/
__ l2g elpung
\

\

\ r——————

/ L

— e ———— —

2es sipung

Z0G awiuny 1980

(uand)
ZIS uoneolddy

€15 uolyes||ddy

L 0G swnuny 33 eaer

Q
Q
LO)|

Sheet 6 of 8 US 9,152,384 B2

Oct. 6, 2015

U.S. Patent

9 34NOI4

029
s|pung
welsAg

ﬁ LLO
uoljeoddy
ﬁ wselD

129
slpung
Aemojen)

ce9
s|pung

209 swnhuny 1980

~—_—_—————

R A%

\ /_ uoneolddy

_ 019 |

_ aouejsu| \ I

| Jlomawel 4 I

_ 19S0 _

|) 109 Jaurejuo) uonedljddy 33 eaer

O
Q)
[le]

US 9,152,384 B2

Sheet 7 of 8

Oct. 6, 2015

U.S. Patent

4 34N9l14

/ 0zL

| alpung wa)sAg

\
AN

<
\.IIVIIII

]
|| y2 sopeon ssein [

\—[IIIII -

/

(Remaren)
Lg/ sipung

I
\

\

/ L

\ | = ~

¢¢/l elpung

20/ swiuny 1980

(1soH)

(wa11D)
ZL/ uoneoiddy

g1/ uonesyjddy

L0/ swiuny 33 eaef

O
O
~

US 9,152,384 B2

Sheet 8 of 8

Oct. 6, 2015

U.S. Patent

8 JdNoId

mow\/\

a|pung Aemajeh
sy} Buisn wisisAs sinpow siweuAp sy} ‘uonyesidde jusio sy eia ‘Buissaooy

c08

80UBjSUl Ylomalwel) 8y) Uo paseq
ajpung Aemajel e aq 0] wa)sAs ajnpow olWeuAp ay} ul ajpung e Bulnbiyuod)

A

Fow\/\

wis)sAs s|NpoW JIWBUAP € 10} 9oUB)SUl YJomaWel) e 0] 8ouslajsl
e JUsUUOJIAUS swnunl uoljesl| dde ue ul uoneoldde jusio e elA ‘BuiulelgO

US 9,152,384 B2

1

SYSTEM AND METHOD FOR REFERENCING
A DYNAMIC MODULE SYSTEM WITHIN A
COMPONENT ORIENTED APPLICATION
DEVELOPMENT FRAMEWORK

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

CLAIM OF PRIORITY

This application claims priority on U.S. Provisional Patent
Application No. 61/865,005, entitled “SYSTEM AND
METHOD FOR INTEGRATING A DYNAMIC MODULE
SYSTEM WITH A COMPONENT ORIENTED APPLICA-
TION DEVELOPMENT FRAMEWORK” filed Aug. 12,
2013, which application is herein incorporated by reference.

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is related to the following patent applica-
tion, which is hereby incorporated by reference in its entirety:

U.S. Patent Application entitled “SYSTEM AND
METHOD FOR PROVISIONING A DYNAMIC MODULE
SYSTEM WITHIN A COMPONENT ORIENTED APPLI-
CATION DEVELOPMENT FRAMEWORK,” application
Ser. No. 14/137,455, filed Dec. 20, 2013.

FIELD OF INVENTION

The present invention is generally related to computer sys-
tems, and is particularly related to providing an application
development framework for software developers.

BACKGROUND

As software systems become more complex, the compo-
nent orientation and code modularity have become increas-
ingly important design goals. Assembling software from
reusable components enables developers to reuse code, to
modify software quickly when requirements evolve, to miti-
gate costs of producing multiple versions, and to reduce
development time by integrating pre-written, third-party
components.

This is the general area that embodiments of the invention
are intended to address

SUMMARY

Described herein is a system and method that can support
an application development framework. The system allows a
client application in the application development environ-
ment to obtain a reference to a framework instance for a
dynamic module system. Furthermore, the system can con-
figure a bundle in the dynamic module system to be a gateway
to the dynamic module system, and the client application can
access the dynamic module system using the gateway bundle.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows an illustration of supporting platform inte-
gration in an application development environment, in accor-
dance with an embodiment of the invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 shows an illustration of supporting a host applica-
tion in an application development environment, in accor-
dance with an embodiment of the invention.

FIG. 3 shows an illustration of provisioning an OSGi
framework by a Java EE application in an application devel-
opment environment, in accordance with an embodiment of
the invention.

FIG. 4 illustrates an exemplary flow chart for supporting a
host application in an application development environment,
in accordance with an embodiment of the invention.

FIG. 5 shows an illustration of supporting a client applica-
tion in an application development environment, in accor-
dance with an embodiment of the invention.

FIG. 6 shows an illustration of referencing an OSGi runt-
ime by a client application in an application execution envi-
ronment, in accordance with an embodiment of the invention.

FIG. 7 shows an illustration of handling inter-application
dependency in an application development environment, in
accordance with an embodiment of the invention.

FIG. 8 illustrates an exemplary flow chart for supporting a
client application in an application development environ-
ment, in accordance with an embodiment of the invention.

DETAILED DESCRIPTION

The invention is illustrated, by way of example and not by
way of limitation, in the figures of the accompanying draw-
ings in which like references indicate similar elements. It
should be noted that references to “an” or “one” or “some”
embodiment(s) in this disclosure are not necessarily to the
same embodiment, and such references mean at least one.

The description of the following embodiments of the
invention uses the Java Platform, Enterprise Edition (or Java
EE) platform as an example for an application development
environment. It will be apparent to those skilled in the art that
other types of application development environment can be
used without limitation. Also, the description of the following
embodiments of the invention uses the OSGi (formerly
known as the Open Services Gateway initiative, now an obso-
lete name) platform as an example for a dynamic module
system. It will be apparent to those skilled in the art that other
types of dynamic module systems can be used without limi-
tation.

Described herein is a system and method that can provide
acomponent oriented modular framework for software devel-
opers.

Component Oriented Modular Software Development

Various component oriented modular frameworks can be
provided to Java developers. Although these application
development frameworks may all have a notion of application
container, to which software developers can deploy their
applications, there can be significant differences among
them.

For example, a component oriented application develop-
ment framework, e.g. the Java EE platform, can define a set of
services, application programming interfaces (APIs), and
protocols that can facilitate component oriented application
development. However, the Java EE framework, which
allows the development of secured, persistence aware, trans-
actional, and scalable Java applications, may provide limited
support for modularity.

On the other hand, the OSGi platform provides a frame-
work for building modular, service-oriented applications, and
addresses the modularity needs of applications.

For example, the OSGi platform allows an application to be
decomposed into smaller units called modules (ak.a.
bundles). A module in the OSGi platform, which is a unit of

US 9,152,384 B2

3

deployment and management, can include a cohesive set of
Java classes and resources that can provide a well defined
functionality. Also, each module can contain additional meta-
data that explicitly states a module’s capabilities and require-
ments (or dependencies).

The OSGi platform can be responsible for matching a
module’s requirements with capabilities offered by other
modules in the runtime. Also, the OSGi platform can define a
sophisticated service framework, which allows modules to
registers plain old Java objects (POJO) as services in a service
registry. Additionally, the OSGi platform can have excellent
support for versioning and dynamicity.

For example, each OSGi bundle can have its own class
loader, which can be created by the OSGi runtime. Every
bundle class loader (with the exception of the system bundle)
can have a private classpath, which points to resources pack-
aged inside the bundle jar. Additionally, every bundle class
loader can have a list of other bundle class loaders to be used
as delegate loaders in order to satisfy the external dependen-
cies of a bundle.

On the other hand, a system bundle, which can be consid-
ered as a virtual bundle, can be based on an OSGi framework
instance. The OSGi framework instance can be associated
with an “org.osgi.framework.launch Framework™ type and
can implement an “org.osgi.framework.Bundle” interface.
Furthermore, the content for the system bundle may not come
from a bundle jar file or other bundles. The OSGi environment
can load the system bundle using the class loader that is used
to load the OSGi framework class. Thus, the class loading of
system bundle can be under the control of an application
developer.

Otherwise, the system bundle appears as a regular bundle
to the rest of the OSGi environment. The system bundle can
publish and consume services. Also, the system bundle can
export packages. A user can configure an exported package
list for a system bundle using properties such as “org.
osgi.framework.system.packages” or “org.osgi.framework-
.system.packages.extra.” Furthermore, the exported pack-
ages can have use constraints, which ensure consistent class
space in a multi-versioned environment. On the other hand,
the system may not import any packages, due to the fact that
the class loader for a system bundle is not controlled by the
OSGi runtime.

There have been various efforts to integrate the Java EE
platform with the OSGi platform. The existing approaches all
require a fundamental change to the way that the Java EE
application is developed and deployed. For example, since the
OSGi runtime becomes the deployment platform, all appli-
cations have to be repackaged and deployed as one or more
OSGi bundles.

Thus, the existing approaches, which require an applica-
tion to be developed and deployed as a set of modules, may
have various drawbacks.

For example, retrofitting existing monolithic Java EE
applications into the OSGi model can be a heavy-duty task for
the Java EE application developers. Also, changes to the
existing Java EE tools and practices may waste the investment
over the years.

Additionally, switching the entire Java EE application to
run under the control of the OSGi framework can be inher-
ently risky, because the underlying Java EE technologies may
not consistently support the application modularity. For
example, a Java EE application may take advantage of the
context loader of a thread in order to achieve extensibility
with an assumption of the global visibility, which may not be
true in the OSGi environment.

10

15

20

25

30

35

40

45

50

55

60

65

4

Native Java EE Module as an OSGi Bundle

In accordance with an embodiment of the invention, the
system can integrate a dynamic module system, e.g. an OSGi
platform, with a component oriented application develop-
ment framework, e.g. a J2EE platform.

The system can provide a migration path to gradually
modularize a Java EE application. For example, the system
enables the Java EE application developers to leverage OSGi
platform, while allowing the Java EE application developers
to continually using their existing software development
environment, code and processes.

The incremental process can inherently safeguard the
modularization of an application and does not affect devel-
oper productivity. Since the changes to the Java EE applica-
tions are incremental in nature, it is a safer option, or solution,
that is suitable for most enterprise Java developers. Also, the
incremental process allows the applications to take full
advantage of the OSGi platform. Thus, the software develop-
ers can be successful in developing modular enterprise Java
applications.

In accordance with an embodiment of the invention, the
system can provide a hybrid environment that allows the
software developers to take advantage of the features pro-
vided by both the J2EE platform and the OSGi platform.
These features can include modularity/dependency manage-
ment, and service dynamism, provided by the OSGi platform.
Additionally, the system allows the software developers to
use different component frameworks, such as EIB, Servlet,
JAX-RS, ISF, CD], etc. Also, the system allows the software
developers to use various infrastructure services, such as
transaction management, security, and persistence, offered by
the Java EE platform.

Furthermore, the system allows a Java EE developer to turn
an existing application into an OSGi bundle, while permitting
the Java EE application to run inside the existing Java EE
runtime. Also, the system allows different Java EE applica-
tions to be deployed into a traditional Java EE container,
while allowing the Java EE applications to expose their
resources (e.g. classes, EJBs, beans) to the OSGi runtime.
Thus, the Java EE applications do not have to be restructured
as OSGi bundles in order to leverage the OSGi platform, and
the OSGi runtime can make these resources available for
consumption by other Java EE applications and non-Java EE
applications.

In accordance with an embodiment of the invention, the
system can leverage the virtual bundle capability, e.g. based
on the system bundle feature in the OSGi platform, in order to
provide support for integration between the OSGi platform
and the Java EE platform. For example, the system enables
the following use cases, which may otherwise be difficult to
achieve in a pure Java EE environment:

Accessing libraries and application classes from the OSGi

platform,

Easier packaging of client applications,

Local EJBs across application boundaries,

EJB as a Service, and

Application Chaining.

Thus, the system, which can be simple to implement, does
not require the underlying Java EE server runtime to run on a
modular platform, such as the OSGi runtime. Also, the system
allows more development time for modularizing the Java EE
server runtime.

FIG. 1 shows an illustration of supporting platform inte-
gration in an application development environment 100, in
accordance with an embodiment of the invention. As shown
in FIG. 1, a host application 101 can use a shared namespace
110, such as Java naming and directory interface (JNDI), to

US 9,152,384 B2

5

provision an OSGi framework 111, while a client application
102 can use a provisioned framework 112.

The host application 101 can chose to keep the OSGi
framework private to itself or make the OSGi framework
available globally for other applications. On the other hand,
anapplication may need to be a client application 102 in order
to export or import resources. Furthermore, a host application
101 can be implicitly a client application 102.

Thus, there can be different aspects for enabling the OSGi/
Java EE integration via supporting using OSGi platform from
within Java EE applications. These different aspects can
include the provisioning of an OSGi Framework by a Java EE
application, and the referencing the OSGi runtime from a Java
EE application to export/import resources. Here, the
resources can include the classes and static resources, such as
images, properties file available via application class loader
chain, and application objects, such as EJBs, JDBC data
sources, CDI beans, etc., which are managed by a Java EE
application container.

Host Application

FIG. 2 shows an illustration of supporting a host applica-
tion in an application development environment, in accor-
dance with an embodiment of the invention. As shownin FIG.
2, an application development environment 200 enables the
integration of an application runtime environment, e.g. a Java
EE runtime 201, with a dynamic module system, e.g. an OSGi
runtime 202. For example, the Java EE runtime 201 can
support different applications 211-213 with corresponding
class loaders 231-233, and the OSGi Runtime 502 can sup-
port different bundles 220-222 with corresponding class load-
ers 240-242.

Furthermore, the host application 211 in the Java EE runt-
ime 201 can access and control the OSGi runtime 202. For
example, the host application 211 can act as a system bundle
for the OSGi runtime 202, and can load the OSGi runtime 202
using a class loader 231, whose parent is an application class
loader. Thus, the host application 211 can be configured to
export its resources to the OSGi runtime 202 and/or consume
various OSGi services.

Additionally, using the host application 211, the system
allows for the integration of the OSGi platform and the Java
EE platform, without requiring any special support from the
underlying Java EE runtime 201. Thus, the host application
211 can continue to run as a native Java EE application.

FIG. 3 shows an illustration of provisioning an OSGi
framework by a Java EE application in an application devel-
opment environment, in accordance with an embodiment of
the invention. As shown in FIG. 3, an application develop-
ment environment 300 allows an OSGi framework instance
315, which is associated with an OSGi runtime 302, to be
bootstrapped within a host application 311 in a Java EE appli-
cation container 301.

Inaccordance with an embodiment of'the invention, the life
cycle of the OSGi framework 315 can be tied to the life cycle
of the host application 311. For example, the OSGi frame-
work can be activated when the host application 311 is
started/loaded by the Java EE application container 301. Also,
the OSGi framework 315 can be deactivated when the host
application 311 is stopped/unloaded.

The OSGi framework instance 315 can be published in the
Java EE application container 301, if the OSGi framework
instance 315 needs to be shared by other applications 312-313
in Java EE application container 301. For example, the host
application 311 can use INDI 314 Java EE application con-
tainer 301 to control the visibility of a published OSGi frame-
work instance 315, in order to take advantage of the simplic-
ity, versatility and namespace support of INDI 314.

20

25

40

45

6

Alternatively, the OSGi framework instance 315 can be pub-
lished using a JMX server in the Java EE application con-
tainer 301.

In accordance with an embodiment of the invention, a Java
EE application developer can provision the OSGi framework
315 based on a programmatic approach. Here, the program-
matic approach, which can be dynamic and easily customiz-
able, may not require any change to the underlying applica-
tion container. Alternatively, a Java EE application developer
can provision the OSGi framework 315 based on application
configuration mechanism in the Java EE application con-
tainer 301.

Furthermore, the host application can provision various
services in the OSGi runtime. These services can include
EIBs, DataSources, CDI beans, POJOs, etc. Also, the system
can install and start a set of OSGi bundles 321-322, while
provisioning the OSGi framework. Here, the OSGi bundle
jars 310 that contain the OSGi bundles 321-322 can be
embedded inside the application 311 or can be downloaded
from an external repository 303.

FIG. 4 illustrates an exemplary flow chart for supporting a
host application in an application development environment,
in accordance with an embodiment of the invention. As
shown in FIG. 4, at step 401, the system can provision a
framework instance for a dynamic module system in an appli-
cation runtime environment. Furthermore, at step 402, the
system can associate a host application in the application
runtime environment with a system bundle in the dynamic
module system. Then, at step 403, the host application can
export one or more resources associated with the host appli-
cation to the dynamic module system, and/or consume one or
more services provided by the dynamic module system.

An Exemplary Host Application

An exemplary host application can be based on OSGi
related implementation classes contained in a deployment
package.

For example, the OSGi related implementation classes in a
“sahoo.samples.wls.ejbosgiservice.server.osgi” package can
include a WebappMain class, which is a servlet context lis-
tener. Also, this package can include a OSGiFrameworkPro-
visioner class, which can be a utility class used by the Webap-
pMain class, and a OSGiServicePublisher class, which can be
a dummy servlet.

Here, the WebappMain class can be the entry point for the
examplary host application. The WebappMain class, together
with the OSGiFrameworkProvisioner class, can be respon-
sible for provisioning the OSGi framework in the Java EE
application.

For example, the WebappMain class can be responsible for
participating in the Java EE application life cycle process that
includes receiving the notification of application start/stop
events. Also, the WebappMain class can be responsible for
creating a class loader that has visibility to application
resources and OSGi framework jars. This class loader is used
to load the OSGi framework, looking up a framework factory
using JDK Service Provider (META-INF/services) mecha-
nism and using it to instantiate a framework instance (e.g. a
Felix instance). Additionally, the WebappMain class can be
responsible for pre-provisioning a set of bundles into the
framework (e.g. Felix shell bundles), and publishing the
framework in JNDI as java:global/osgi-framework.

Furthermore, the OSGiServicePublisher class, which can
be a dummy servlet, is responsible for publishing services to
the OSGi runtime. The OSGiServicePublisher class can be
set up to be loaded on startup. Since the OSGiServicePub-
lisher class is a servlet, the OSGiServicePublisher class is
guaranteed to be loaded after the OSGiFrameworkProvi-

US 9,152,384 B2

7

sioner class, which is a ServletContextListener. Thus, the
OSGiFrameworkProvisioner class can safely use the OSGi
framework from JNDI.

The following List 1 shows an EJB that can be used by the
exemplary host application.

8

-continued

List3

public void stop(BundleContext ctx) {

}
}
List 1
: : Client Application
%E?;ogrrffﬁsgﬁpf;éﬁ a:globaliosgi-framework”) Bundle bundle; o Inaccordance with an embodiment of the invention, the

public void init(ServletConfig servletConfig) throws ServletException {
BundleContext betx = bundle.getBundleContext();
betx.registerService(Foo.class.getName(), fooEjb, null);
super.init(servletConfig);

As shown in the above, the EJB can be based on a
“sahoo.samples.wls.ejbosgiser-
vice.server.impl.FooEjb.class,” which has a local business
interface, “sahoo.samples.wls.ejbosgiser-
vice.server.api.Foo.class.”

Also, the host application can use the framework configu-
ration properties file (e.g. an osgi.properties file) to configure
exportation of the package. Here, in order to use the exported
EJB as an OSGi service, the host application can export the
EJB business interface packages for other bundles, e.g. using
the following entry in an osgi.properties configuration file:

org.osgi.framework.system.packages.extra=sahoo.

samples.wls.ejbosgiservice.server.api; version=1.0,
javax.ejb; version=3.0

As shown inthe above, the host application is able to export
not only packages, but also different classes, from a parent
class loader.

Additionally, the system can use shell bundles, such as the
Felix remote shell bundles in WEB-INF/bundles/. Thus, after
a user deploy the application into a Java EE server, the user
can connect to the provisioned OSGi runtime, via the Felix
remote shell bundle, and inspect the application.

The following List 2 shows a manifest for a pure OSGi
bundle that can access the EJB interface package and the EJB
service based on the OSGi mechanism.

List 2

[MANIFEST sahoo.samples.wls.ejbosgiservice.osgiclient.jar]

Bundle-Activator sahoo.samples.wls.ejbosgiservice.osgiclient.-

Bundle-ManifestVersion Activator 2

Bundle-SymbolicName sahoo.samples.wls.ejbosgiservice.osgiclient

Created-By X.X.0_0X (XXX Corporation)

Import-Package sahoo.samples.wls.ejbosgiservice.server.api,
org.osgi.framework

Manifest-Version 1.0

As shown in the above, this bundle can import the EJB
interface package. Also, this bundle may not be aware that it
is calling an EJB, since it has a bundle activator.

5
The following List 3 shows an exemplary bundle activator,

which can look up the service in OSGi service registry and
invokes a business method.

List 3

public class Activator implements BundleActivator {
public void start(BundleContext ctx) {
Foo foo = (Foo)ctx.getService(ctx. getServiceReference
(Foo.class.getName()));
System.out.println(foo.bar());

}

15

20

25

30

40

45

50

60

65

system can use a client application to consume a service
registered by another application.

FIG. 5 shows an illustration of supporting a client applica-
tion in an application development environment, in accor-
dance with an embodiment of the invention. As shown in FIG.
5, an application development environment 500 enables the
integration of an application runtime environment, e.g. a Java
EE runtime 501, with a dynamic module system, e.g. an OSGi
runtime 502. For example, the Java EE runtime 501 can
support different applications 511-513 with corresponding
class loaders 531-533, and the OSGi runtime 502 can support
different bundles 520-522 with corresponding class loaders
540-542.

In accordance with an embodiment of the invention, a
client application 512 in the Java EE environment 501 can
obtain a reference to an OSGi runtime 502. As shown in FIG.
5, the client application 512 can select a bundle 521, e.g. from
its own directory of bundles, as the gateway bundle to access
the OSGi runtime 502. Here, the gateway bundle 521 allows
the client application 512 to have better control over which
resources or services that it wants to import from the OSGi
runtime 502. Furthermore, the gateway bundle 521 also sim-
plifies security configuration and lifecycle management of
the client application 512.

Additionally, in order for the client application 512 in the
Java EE environment 501 to have visibility to the host appli-
cation classes in the bundles 520-522, the class loader 532 for
the client application 512 can be set up to delegate to a
referenced bundle class loader 540-542. The metadata of the
referenced bundle 520-522 can determine which classes are
made available to the client application 512. For example, the
system can configure that whatever is loadable via
Bundle.loadClass or Bundle.getResource type API can be
made available to the client application 512.

FIG. 6 shows an illustration of referencing an OSGi runt-
ime by a client application in an application execution envi-
ronment, in accordance with an embodiment of the invention.
As shown in FIG. 6, a client application 611 in a Java EE
application container 601 can reference an OSGi runtime
602, in order to export and/or import resources to and/or from
the OSGi runtime 602.

For example, the client application 611 can obtain a refer-
ence to an OSGi framework instance 610 from JNDI 613.
Here, the OSGi framework instance 610 can implement an

5 “org.osgi.framework.Bundle” interface, which provides

access to the OSGi runtime 602. Additionally, when the client
application 611 is also a host application (e.g. in the case of
the host application 311 as shown in FIG. 3), the object to
access the OSGi runtime 602 can be the OSGi framework
instance 315, which is provisioned by the host application
311.

As shown in FIG. 6, the system can make the bundle 621
available in a fixed INDI 613 location, which allows another
application 612, or any code in the same module, to access the
bundle 621. Also, the client application 611 can use the
bundle 621 as a gateway to access the OSGi runtime 602 for
publishing and/or consuming OSGi services.

US 9,152,384 B2

9

Furthermore, the client application 611 can state a depen-
dency on the OSGi runtime 602 and configure a gateway
bundle 621 that can be used to access the OSGi runtime 602.
For example, the system can be based on the “OSGi for
Applications” feature in the WebLogic environment.

Additionally, in order to access the OSGi runtime 602, the
application developers can use annotation or deployment
descriptor to specify the name of the framework instance 610
to use, a directory within the client application 611, which can
be used to scan bundle jar files that are automatically installed
and started as part of the client application 611, and a bundle
621 that is used as the gateway to the referenced OSGi runt-
ime.

The following List 4 shows an exemplary descriptor entry.

List 4

<osgi-framework-reference>
<name>java:global/osgi-framework</name>
<bundles-directory>WEB-INF/osgi-lib</bundles-directory>
<application-bundle-symbolic-name>bundlel</application-bundle-
symbolic-name>

</osgi-framework-reference>

The following List 5 shows an exemplary annotation.

List 5

@OSGiFrameworReference(
name = “java:global/osgi-framework”,
bundlesDir="WEB-INF/osgi-lib”,
bundle = “someBundleSymbolicName[:Version]”)

Thus, when the application 611 is started, the Java EE
runtime 601 can parse the above descriptor entries in List 4 or
analyze the above annotation in List 5 to set up the environ-
ment, For example, the Java EE application container 601 can
install and start a set of bundles 620-622 in the referenced
framework 610, set up the application class loader to also
delegate to the class loaders associated with the different
referenced bundles 620-622, and make the referenced bundle
620-622 available, e.g. in a module specific INDI name such
as “java:module/osgi-bundle.”

Furthermore, the Java EE container 601 can stop and/or
uninstall the bundles 620-622, when the client application
611 is stopped.

In accordance with an embodiment of the invention, the
system can handle inter-application dependency among vari-
ous client applications and host applications involved in the
class loader organization. The class loader organization can
determine how client applications depend on host applica-
tions via the OSGi module layer. Additionally, the client
application and host applications can use each others’ pub-
lished services.

FIG. 7 shows an illustration of handling inter-application
dependency in an application development environment, in
accordance with an embodiment of the invention. As shown
in FIG. 7, an application development environment 700
enables the integration of an application runtime environ-
ment, e.g. a Java EE runtime 701, and a dynamic module
system, e.g. an OSGi runtime 702.

For example, the Java EE runtime 701 can support different
applications 711-713 with corresponding class loaders 731-
733, and the OSGi runtime 702 can support different bundles
720-722 with corresponding class loaders 740-742.

As shown in FIG. 7, a host application 711 in the Java EE
runtime environment 701 can provision the OSGi runtime

5

10

15

20

25

30

40

45

55

60

10

702, and a client application 712 in the Java EE environment
701 can obtain a reference to the OSGi runtime 702.

Furthermore, the system involves a life cycle dependency
between the host application 711 and client applications 712.
This dependency can be handled in the Java EE runtime 701
frameworks. For example, different Java EE servers, such as
WebLogic Server and GlassFish, can support deployment
order for various Java EE applications. Inside a deployment
file, such as an EAR file, the deployment order for different
modules can be controlled using Java EE configuration file,
e.g. the application.xml file.

Thus, the host applications, such as the application 711,
can be configured to be loaded ahead of the client applica-
tions, such as the application 712, and the opposite order can
apply during the unloading of the client applications. Further-
more, there can be no additional life cycle requirements, if the
client application 712 does not install any framework exten-
sion bundles.

Additionally, an OSGi framework can be used only in the
local server since the OSGi runtime 702 is not a serializable
entity. When an application is deployed to a cluster, then the
application can automatically get loaded in each cluster
instance separately. Thus, as part of loading in different clus-
ter instance, an OSGi framework can be provisioned sepa-
rately on each cluster instance. This ensures that the OSGi
framework may always be available locally, and can make the
OSGi/Java EE integration working in a cluster.

Furthermore, some IJNDI implementations, such as
WebLogic JNDI, can support replication in a cluster. In order
to publish the OSGi framework to global JINDI context in
such an environment, the system can make sure that the
underlying JNDI implementation does not try to replicate
OSGi framework in a cluster. For example, in WebLogic
INDI, the system can set the “weblogic.jndi.replicateBind-
ings” property to “false,” while exporting the OSGi frame-
work object to the global INDI context.

Moreover, security can be built into every layer of the OSGi
framework, and can be used when JVM is started with a
security manager. The security manager can define a number
of permission classes that control access to OSGi API. Since
the OSGiAPI can be directly accessed by Java EE application
code, an administrator can control the security at the level of
Java EE application code. For example, the client application
may require being given appropriate OSGi permission to call
Bundle.getBundleContext.

FIG. 8 illustrates an exemplary flow chart for supporting a
client application in an application development environ-
ment, in accordance with an embodiment of the invention. As
shown in FIG. 8, at step 801, a client application in an appli-
cation runtime environment can obtain a reference to a frame-
work instance for a dynamic module system. Furthermore, at
step 802, the client application can configure a bundle in the
dynamic module system to be a gateway bundle based on the
framework instance. Then, at step 803, the client application
can access the dynamic module system using the gateway
bundle.

An Exemplary Client Application

The following List 6 shows a servlet that can be used by an

exemplary client application.

List 6

@WebServlet(urlPatterns="/")

public class FooServlet extends HttpServlet {
private static final String ejbJndiName =
“java:global/sahoo.samples.wls.ejbosgiservice.server/FooEjb”;

US 9,152,384 B2

-continued -continued
List 6 Import-Package sahoo.samples.wls.ejbosgiservice.server.api

@EIB(lookup = ejbIndiName) Foo foo;
public void service(javax.servlet. ServletRequest servletRequest,
javax.servlet.ServletResponse servletResponse) throws javax.servlet.
ServletException {
try {
servletResponse.getWriter().println(this.foo.bar());
servletResponse.getWriter().flush();
} catch(Exception e) {
e.printStackTrace();
¥

¥
¥

As shown in the above, the servlet, FooServlet, can inject a
local EJB, which can be part of another independently
deployed application, using a portable INDI name, e.g. “java:
global/sahoo.samples.wls.ejbosgiservice.server/FooEjb.”
Furthermore, the servlet, FooServlet, can invoke the business
method of the EJB, FooEjb, and can print the result to
response stream in the service method. Here, there is no need
to bundle the EJB interface classes. Even when the EIB
interface classes are bundled, the local EJBs are called via
“call by reference” semantics, which means that both the
callee and the caller shares the same runtime classes for the
interfaces.

Additionally, a user can access the servlet by visiting the
following URL..

http://localhost:7001/sahoo.samples.wls.ejbosgiser-

vice.webclient

The user can expect the following response.

sahoo.samples.wls.ejbosgiservice.server.impl.FooEjb_

leq6pa_Impl@fa083da

The following List 7 shows a configuration file in the
deployment file, e.g. a weblogic.xml file in the WEB-INF
directory.

List 7

<weblogic-web-app xmlns="“http://xmlns.oracle.com/weblogic/
weblogic-web-app”
<container-descriptor>
<prefer-web-inf-classes>false</prefer-web-inf-classes>
</container-descriptor>
<osgi-framework-reference>
<name>java:global/osgi-framework</name>
<application-bundle-symbolic-name>
sahoo.samples.wls.ejbosgiservice.webclient.bundle
</applicationbundle-symbolic-name>
</osgi-framework-reference>
</weblogic-web-app>

Furthermore, the exemplary client application can config-
ure a bundle, such as sahoo.samples.wls.ejbosgiser-
vice.webclient.bundle, as the OSGi gateway bundle. This
bundle can be packaged as:

WEB-INF/osgi-lib/sahoo.samples.wls.ejbosgiser-

vice.webclient.bundle jar

This bundle jar can be an empty jar, which imports the EJB
interface package. The following List 8 shows a manifest for
the bundle jar.

[MANIFEST sahoo.samples.wls.ejbosgiservice.webclient.bundle.jar]
Bundle-ManifestVersion 2

Bundle-SymbolicName sahoo.samples.wls.ejbosgiservice.webclient.
bundle

Created-By 1.7.0__09 (Oracle Corporation)

10

15

20

25

30

35

40

45

50

55

60

65

Manifest-Version 1.0

Furthermore, this gateway bundle can be installed into the
same framework that was provisioned by the exemplary host
application as described in the previous section. Also, the
class loader for the exemplary host application can be set up
to delegate to this gateway bundle. The delegate bundle can be
wired to the EJB interface package that is part of the host
application.

The present invention may be conveniently implemented
using one or more conventional general purpose or special-
ized digital computer, computing device, machine, or micro-
processor, including one or more processors, memory and/or
computer readable storage media programmed according to
the teachings of the present disclosure. Appropriate software
coding can readily be prepared by skilled programmers based
on the teachings of the present disclosure, as will be apparent
to those skilled in the software art.

In some embodiments, the present invention includes a
computer program product which is a storage medium or
computer readable medium (media) having instructions
stored thereon/in which can be used to program a computer to
perform any of the processes of the present invention. The
storage medium can include, but is not limited to, any type of
disk including floppy disks, optical discs, DVD, CD-ROMs,
microdrive, and magneto-optical disks, ROMs, RAMs,
EPROMs, EEPROMs, DRAMs, VRAMs, flash memory
devices, magnetic or optical cards, nanosystems (including
molecular memory ICs), or any type of media or device
suitable for storing instructions and/or data.

The foregoing description of the present invention has been
provided for the purposes of illustration and description. It is
not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Many modifications and variations
will be apparent to the practitioner skilled in the art. The
modification and variation include any relevant combination
of'the disclosed features. The embodiments were chosen and
described in order to best explain the principles of the inven-
tion and its practical application, thereby enabling others
skilled in the art to understand the invention for various
embodiments and with various modifications that are suited
to the particular use contemplated. It is intended that the
scope of the invention be defined by the following claims and
their equivalence.

What is claimed is:

1. A method, in an application development system com-
prising a memory and one or more microprocessors, for sup-
porting a hybrid application development environment,
including support for reference in an application runtime
environment relative to an associated dynamic module sys-
tem, the method comprising:

obtaining, via a first client application in the application

runtime environment, a reference to a framework
instance for the associated dynamic module system;

configuring a bundle in the dynamic module system to be a

gateway bundle based on the reference to the framework
instance;

making the gateway bundle available in a predetermined

location of a shared namespace in the memory for selec-
tive access by a second client application in the applica-
tion runtime environment; and

US 9,152,384 B2

13

accessing, via the first client application or selectively by
the second client application, the dynamic module sys-
tem using the gateway bundle.

2. The method according to claim 1, further comprising:

allowing the framework instance to be at least one of:
published in the application runtime environment, or
provisioned by a host application.

3. The method according to claim 1, further comprising:

using annotation or deployment descriptor to specify at
least one of:

a name of the framework instance,

a directory, associated with the first client application,
which can be used to scan bundle jar files that are
automatically installed and started as part of the first
client application, and

a bundle that is used as the gateway bundle to the
dynamic module system.

4. The method according to claim 3, further comprising:

parsing, via the application runtime environment, the
annotation or the deployment descriptor, when the first
client application is started.

5. The method according to claim 4, further comprising:

installing and starting a set of bundles in the reference
framework instance,

setting up an application class loader to delegate to a class
loader associated with a referenced bundle in the set of
bundles, and

making available a referenced bundle in the application
runtime environment.

6. The method according to claim 5, further comprising:

stopping and uninstalling the set of bundles when the first
client application is stopped.

7. The method according to claim 1, further comprising:

coupling a life cycle of the framework instance with a life
cycle of the first client application.

8. The method according to claim 1, further comprising:

provisioning a framework instance separately on each
instance in a cluster, when the first client application is
deployed to the cluster.

9. The method according to claim 1, further comprising:

allowing the first client application to continually run as a
native application in the application runtime environ-
ment.

10. The method according to claim 1, further comprising:

allowing the dynamic module system to be an OSGI sys-
tem and the application runtime environment to be a Java

EE runtime environment, and

wherein the making the gateway bundle available com-
prises making the gateway bundle available at a fixed

Java naming and directory interface (JNDI) location,

which allows another client application, or any code in

one or more modules of the first client application to
access the gateway bundle.
11. A system for supporting a hybrid application develop-

ment environment, including support for reference in an
application runtime environment relative to an associated
dynamic module system, the system comprising:

one or more microprocessors operatively coupled with a
memory,

afirst client application in the application runtime environ-
ment running on the one or more Microprocessors,
wherein the first client application operates to perform
steps comprising:
obtaining a reference to a framework instance for a

dynamic module system;

10

20

25

30

40

45

65

14

configuring a bundle in the dynamic module system to
be a gateway bundle based on the reference to the
framework instance;

making the gateway bundle available in a predetermined
location of a shared namespace in the memory for
selective access by a second client application in the
application runtime environment; and

accessing the dynamic module system by the first client
application or selectively by the second client appli-
cation using the gateway bundle.

12. The system according to claim 11, wherein:

the framework instance is at least one or more of: published
in the application runtime environment, or provisioned
by a host application.

13. The system according to claim 11, wherein:

annotation or deployment descriptor is used to specify at
least one of:

a name of the framework instance,

a directory, associated with the first client application,
which can be used to scan bundle jar files that are
automatically installed and started as part of the client
first application, and

a bundle that is used as the gateway bundle to the
dynamic module system.

14. The system according to claim 13, wherein:

the application runtime environment is configured to parse
the annotation or the deployment descriptor, when the
first client application is started.

15. The system according to claim 14, wherein:

the application runtime environment operates to:
install and start a set of bundles in the reference frame-

work instance,

set up an application class loader to delegate to a class
loader associated with a referenced bundle in the set
of bundles, and

make a referenced bundle available in the application
runtime environment.

16. The system according to claim 15, wherein:

the application runtime environment operates to stop and
uninstall the set of bundles when the first client applica-
tion is stopped.

17. The system according to claim 11, wherein:

the application runtime environment operates to couple a
life cycle of the framework instance with a life cycle of
the first client application.

18. The system according to claim 11, wherein:

a framework instance is provisioned separately on each
instance in a cluster, when the first client application is
deployed to the cluster.

19. The system according to claim 11, wherein:

the first client application operates to continually run as a
native application in the application runtime environ-
ment.

20. A non-transitory machine readable storage medium

having instructions stored thereon that when executed cause a
system to perform steps comprising:

obtaining, via a first client application in an application
runtime environment, a reference to a framework
instance for a dynamic module system;

configuring a bundle in the dynamic module system to be a
gateway bundle based on the reference to the framework
instance;

making the bundle available in a predetermined location of
a shared namespace in the memory for selective access
by a second client application in the application runtime
environment; and

US 9,152,384 B2
15

accessing, via the first client application or selectively by
the second client application, the dynamic module sys-
tem using the gateway bundle.

#* #* #* #* #*

16

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 9,152,384 B2 Page 1 of 1
APPLICATION NO. : 14/137483

DATED : October 6, 2015

INVENTOR(S) : Sanjeeb Kumar Sahoo

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
In the specification
Column 1, line 50, delete “address™ and insert -- address. --, therefor.

Column 9, line 29, delete “(@OSGiFrameworReference(” and insert
-- @OSGiFrameworkReference(--, therefor.

Column 9, line 31, delete “="WEB-INF/osgi-lib”,” and insert -- =“WEB-INF/osgi-lib”, --, therefor.

Signed and Sealed this
Twentieth Day of September, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

